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ABSTRACT 

The structures formed by laminated composites have great application in civil engineering. Mainly covering of 

industries with trapezoidal tile with acoustic insulation. Another application of the composite system is in the green 

layers of the roof. So this paper discussed a formulation for stability analysis of laminated plates through the Finite 

Element Method. The formulation presented allows the use of triangular and quadrilateral elements with different 

interpolation orders. In the numerical examples, the quadratic finite element with quadratic interpolation C3D8R was 

used to study its behavior. The reduced integration technique was used to alleviate the shear block problem. The 

behavior of these elements was evaluated by comparing the results obtained by FEM with analytical solutions based 

on the classical laminated plate theory. The results show that the elements provided excellent precision results for 

cross-layer laminates and single and biaxial angles and loads. 

KEYWORDS: Laminated Plates, Finite Elements, Non Geometric Linearity and ABAQUS 

I. INTRODUCTION 
In the design of structures, linear models are usually used for stress analysis. However, linear analysis is valid 

only when the structure suffers just small deformations and displacements and its material has linear elastic 

behavior, obeying Hooke's Law. When the displacements and deformations increase or the behavior of the 

material presents phenomena such as plasticity and cracking, the nonlinear effects gain importance. 

In the general case, both geometric nonlinearity due to large displacements and physical non-linearity due to 

material’s mechanical behavior need to be considered. However, slender structures may lose stability without 

sufficient applied loads to cause material degradation. Thus, in the study of the stability of these structural 

elements it can be assumed that the material remains in the linear elastic regime and the loss of stability is 

caused only by geometric non-linearity. 

Plate stability analysis involves the solution of partial differential equations (Reddy, 1996). Even in the case of 

homogeneous and isotropic plates, these equations only have exact (closed) solutions for simple geometries, 

loads and boundary conditions. In order to eliminate this limitation and allow the solution of practical cases, the 

Finite Element Method (FEM) was used. 
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The focus of this paper will be the stability analysis of laminated plates using FEM. It will be used finite 

elements based on the first order shear deformation theory, also known as Reissner-Mindlin's plate theory 

(Reddy, 1996; Bathe, 1996; Cook et al., 2002) and the non-linear effects will be taken into account through the 

use of von Kármán's theory (Crisfield, 1991). Particularly, it will be studied the behavior of a quadratic 

quadrilateral element of eight knots C3D8R in ABAQUS. 

The formulation presented here was implemented in the Matlab software, which is a free software for structural 

analysis through Finite Element Method that uses the philosophy of Object Oriented Programming. The 

numerical results will be compared with the analytical solution of some classic problems found in the literature 

(benchmarks) in order to validate the proposed formulation and implementation. 

II. MATERIALS AND METHODS 

1. Composite materials 

Composite materials are formed by two or more materials combined on a macroscopic scale, aiming to obtain a 

material with desired properties not obtained in the individual components (Reddy, 1996). Composite materials 

are generally classified in three different types: particulate composites, fibrous composites or laminated 

composites (Jones, 1999), as shown in Figure 1.  

                

A) Composite material with fiber: Concrete with steel fiber 

 

                

B) Composite formed by particles: Rocks formed by crystals 

 

(C)Types of composites used in industrial roofing 
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(D) Laminated Composite  

Figure 1 - Different types of composite materials 

The structural members fabricated using laminated composites are formed by a series of layers joined to 

work in solidarity. A common example of a composite obtained in this way is plywood. However, for the 

fabrication of high performance structural elements, the most widely used materials are fiber reinforced 

composites (Jones, 1999; Reddy, 1996). In this case, each blade is formed by a set of fibers of high strength 

and stiffness embedded in the base material or matrix of lower strength and stiffness, but mainly of lower 

cost. In this way, each layer behaves macroscopically as an orthotropic material, whose main directions are 

parallel and perpendicular to the fibers. 

 

2. Laminated Composite 

The structures formed by laminated composites have great application in civil engineering. Mainly covering 

of industries with trapezoidal tile with acoustic insulation. Another application of the composite system is in 

the green layers of the roof. 

Green roofs offer a variety of benefits for the resident and the city, including reduced energy costs, 

extended roof life, rainwater retention and improved air quality. 

Several incentives to use this system are being implemented in Europe and the United States, led by 

nonprofit philanthropic organizations. One is the Anacostia Watershed Society, a non-profit organization 

that facilitates the Green Roof Rebate program of the District Energy Department, which covers a certain 

cost per square foot of its green roof. 

In this way, the layer represents the fundamental block of laminated composites (Reddy, 1996). The layers 

have high strength and modulus of elasticity in the direction of the fibers and low values in the orthogonal 

direction to the fibers. The laminated composites are constructed according to a layer structure, which is 

defined by the number of layers, orientation of the fibers (θ) and thickness of each layer, as shown in Figure 

2.   

 

Figure 2 - Several layers of the composite material on the reference axis 
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Due to the orthotropic characteristic of each layer, the composites can be fabricated in such a way as to obtain a 

maximum advantage in each specific situation by placing the direction of the fibers along the most requested 

directions (path of the loads). In this way, it can be obtained from highly optimized projects by changing the 

number, thickness, and sequence of the layers, as well as the orientation of the fibers of each layer. 

3. Constitutive conditions 

Laminated composites are formed by several layers and each one has fibers oriented in different directions. 

Then, the analysis of laminated structures requires the use of a global coordinate system (x, y, z) in which the 

differential equations of equilibrium and kinematic conditions are written, while the constitutive conditions of 

the material are written in the local coordinate system or of the material (x1, x2, x3), As shown in Figure 3. 

 

 

 
Figure 3 - Layers of a laminate. Reddy (2004) 

In layers with unidirectional fibers, the x1 axis is oriented parallel to the fibers, making an angle θ with the 

principal axis x. The x2 axis is perpendicular to the fibers in the plane of the plate and the x3 axis is 

perpendicular to the plane of the plate, as shown in Figure 3. Since the material of each layer is considered 

homogeneous and orthotropic, it is necessary to establish a relation between the coordinate system of the plate 

material (x1, x2, x3) and the global coordinate system (x, y, z). 

It is verified experimentally (Jones, 1999) that in usual service conditions the mechanical behavior of the layers 

can be considered as elastic linear, using the Hooke's Law generalized to represent the stress-strain relationship. 

For orthotropic materials the stress-strain relationship in each layer is given by. 

εCσ   (1) 

Where C is the elastic constitutive matrix.  

 ( )ijkl ij kl ik jl il jk        C  (1a) 

Where λ and μ are the Lamé constants. The constant μ is equivalent to the transversal modulus of elasticity, that 

is, μ ≡ G = E 2 (1 + ν). On the other hand, the constant λ relates to the longitudinal modulus of elasticity E and 

the Poisson coefficient ν through the following expression λ = νE (1 + ν) (1-2ν). 

Therefore, the strain versus strain ratio is given by: ij ijkl kl C . 

In practice, this matrix is obtained by inverting the stress-strain relationship:  
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In this equation S is the matrix of flexibility (or compliance) of the material, whose coefficients are given by: 
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Where E1, E2 and E3 are the moduli of elasticity in the principal directions, v12, v21, v13, v31, v23, v32 are the 

Poisson coefficients and G12, G13 e G23 are the shear moduli of elasticity. It is important to note that orthotropic 

elastic materials have only 9 independent constants, since the Poisson coefficients ( ij ) must satisfy the 

relation: 

 3,2,1,  ji
EE j

ji

i

ij 
, (4) 

Since the S matrix is symmetric. 

The relation between the coordinates of the material (x1, x2, x3) and the global reference system (x, y, z) is 

defined from the orientation of the fibers (θ) with respect to the x-axis of the global system, as shown in Figure 

3. The change of coordinate system is performed through the transformation: 
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The transformation of the 𝑢1, 𝑢2  and 𝑢3  displacements is carried out in an analogous way:  
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Due to the small thickness, it is common to assume that each layer of the plate is subjected to a Plane 

Stress State (PSS). Thus, all stress components parallel to the z-axis are zero. In this case, the deformation 

components of interest are given by. 
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Using Equations (6) and (7) it can be shown that the membrane deformations can be transformed between the 

systems through the matrix relation: 
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The relation between tensions and membrane deformations can be obtained from Equation (2) by eliminating 

the null terms: 
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where Sij coefficients are given by Equation (3). Finally, by inverting Equation (9), the stress-strain relationship 

can be written as 

11

12

2

1

66

2212

1211

12

2

1

00

0

0

εQσ 





























































Q

QQ

QQ

, (10) 

where the Qij coefficients are calculated from the properties of the material, as follow: 
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In relatively thick plates it is necessary to take into account the effect of transverse shear, which means that 

the τ23 and τ13 stresses should be considered. In this case, the shear deformations in the two systems are given by 
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Using Equations (6) and (12), it is determined the transformation of the shear deformations between the two 

systems 
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On the other hand, the stress-strain relationship due to transverse shear is given by: 
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Where 

31552344 e GQGQ  . (15) 

Using the Principle of Virtual Work it can be shown (Cook et al., 2002) that the transformation of local system 

stresses into the global system is done through:  
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Finally, substituting Equations (10), (8), (14) and (13), respectively in the first and second Equation (16), we 

get:  
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The ijQ  coefficients are determined by performing the following matrix operations:  
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The Q matrix is called the transformed stiffness matrix, since it is in the global coordinate system.  














s

m

Q

Q
Q

0

0
 (20) 

4. Analysis of laminated plates 

The deformations in the plane x1, y1 at a distance z1 from the median plane of the plate are deformations due to 

bending. That can be represented by the partial derivatives, according to Szilard (2003) and thus to be 

determined the equations that govern the laminated plate and thick plate, according to Figure 4: 

  

 

 

 

 
Neutral axis 
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Figure 4 - Deformed bisupported plate with distributed loading (Szilard, 2003) 

According to the classical plate theory (Kirchhoff's theory) a normal line to the median plane of the plate will 

remain normal to the median plate surface after deformation. This implies that the transverse shear effect is not 

considered, since the angular deformations (γxz and γyz) are zero. This theory is appropriate only for 

homogeneous plates of small thickness. 

In the case of thick plates and laminated plates, transverse shear cannot be neglected, requiring the use of 

another plate theory. In Mindlin's theory, the shear effect is considered roughly. The basic hypothesis of this 

theory is that a normal line to the median plane of the plate will not necessarily remain normal to the median 

plane of the plate after the deformation, as shown in Figure 5. 

 

Figure 5 – Deformations in Mindlin’s theory 
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According to this figure it is verified that the displacements at any point of the plate (𝑢𝑥, 𝑢𝑦  and 𝑢𝑧) are given 

by: 

           yxwzyxuzyxvzyxuzyxuzyxu zxyyx ,,,,,,,,,    (21) 

where u, v and w are the transverse displacements of the median plane of the plate and x  e y are the rotations 

of the normal line about the x and y axes respectively. 

When the displacements are moderately large, there is an interaction between the effects of membrane and 

bending due to transverse displacements. Von Kármán's theory incorporates this effect using a simplified form 

of the Green-Lagrange deformations obtained by neglecting the nonlinear terms associated with the 

displacement components in the directions of the plate’s plane, ux and uy (Crisfield, 1991). In this case, the 

deformation components at any point on the plate are: 
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(22) 

Replacing the displacement given by Eq. (21) in Eq. (22), we have that the deformations in any plane parallel to 

the median plane of the plate are given by: 
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(23) 

The first two portions correspond to the membrane deformations and the third portion due to the bending 

components. These deformations can be written matrically as: 

κεε
m z  (24) 

where 
m
ε  is the deformation of the median plane’s membrane and is associated with the curvature of the plate. 

Membrane deformations are composed of two portions, the first due to linear behavior and the second due to the 

nonlinear effect of the transverse displacements of the plate, as shown in Eq. (25). Using the matrix notation, we 

have: 

m

L

mm
εεε  0  (25) 

On the other hand, the deformations due to the transversal shear are given by: 
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For a generic layer k with unidirectional fibers, as shown in Figure 3, the tensions are given by Eq. (17) and the 

components of 
k

mQ  and 
k

sQ  are given by Eq. (19). 

The resulting forces and moments (generalized tensions) are obtained by integrating the stresses along the 

thickness of the plate: 
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It is important to note that, according to Eqs. (22) and (24), the deformations are continuous along the thickness 

of the layer, regardless the material variation, which does not occur with the stress components, as shown in Eq. 

(17). In general, this is due to the change in the properties of each layer. Using Eqs. (17) and (24) in (27), it can 

be written in terms of internal stresses and generalized deformations: 
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where the sub-matrix components are given by 
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(29) 

and kij is the correction factor of shear stresses (Reddy, 1996). It is found that if the laminated plate is 

symmetrical, the matrix B is zero. 

5. Non-linear geometric analysis 

Several problems of practical interest can be easily solved considering linear models, which present satisfactory 

approximate results when displacements and deformations are small. However, when the displacements and 

deformations begin to increase, the effects of geometric non-linearity must be considered in the structure 

analysis. This is also the case for structures that undergo buckling by bifurcation even when the displacements 

are small, such as perfect columns and plates and loaded in their own plane. 

In non-linear geometrical problems, the analysis can be performed starting from the initial configuration of the 

structure and determining the displacements, stresses and stresses as the load is increased. This strategy is 

known as Load Control (Crisfield, 1991), where interative load increments are applied in order to determine the 

equilibrium path of the structure. Due to the nonlinearity of the response it is necessary to use an iterative 

procedure to determine the displacements corresponding to the applied load. One of the most used methods for 

this purpose is the Newton-Raphson’s method (Crisfield, 1991, Bathe, 1996, Cook et al., 2002), since this one 

presents quadratic convergence.  
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The equilibrium equations of the structural system can be written as (Crisfield, 1991): 

0fg(u)r(u)    
(30) 

where u is the nodal displacement vector, r is the vector of unbalanced forces (residual), g is the vector of 

internal forces, f is the vector of external forces, and λ is the load factor. Note that in this equation the total load 

is given by the product between the load factor and the reference loads. Increasing the load factor, it is possible 

to control the variation of the total external force. 

Using the Principle of Virtual Works (PVW), we have: 

extWW  int  
(31) 

The external virtual work leads to the vector of equivalent nodal forces in a process that is essentially the same 

as the one used in linear problems. On the other hand, internal work leads to the determination of the vector of 

internal forces 

dVdVW
V

tt

V

t
σBgguσε    int  (32) 

where the B  matrix is defined through the relation 

uBε    (33) 

Using the Newton-Raphson method, the vector of internal forces g(u) is linearized with respect to the 

displacements du. Therefore: 

uKσBσBg ddVddVdd t

t

V

t

V

   
(34) 

where Kt is the tangent stiffness matrix. Using Eqs. (1) and (33), it is verified that the stress increase is given by: 

uBCεCσ ddd   (35) 

and from Equation (50): 

Ldd BB  (36) 

Substituting Eqs. (35) and (36) into Eq. (34), we have:  

 KKKuKKσBuBCBg   ete

V

t

L

V

t

ddVdddVd )(  
(37) 

where Ke is known as the elastic stiffness matrix and K is known as the geometric stiffness matrix or the initial 

stresses (Crisfield, 1991; Zienkiewicz and Taylor, 2000). From Eqs. (50) and (34) it can be seen that this matrix 

can be written as 

L

V

t

e dV KKBCBK   0
 (38) 

Thus, elastic stiffness matrix is obtained by summing the initial stiffness matrix ( 0K ) and the stiffness matrix 

due to the previous displacements ( LK ).  
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6. Isoparametric elements 

It is important to note that the elastic matrix shown in Eq. (38) is independent of the finite element used. 

However, the same does not occur with the B and K  matrices. Thus, the complete definition of the matrices to 

be used in the analysis of the stability of laminated plates requires the specification of the finite element used. 

In this work, isoparametric finite elements were used (Cook et al., 2002). It is important to note that, due to the 

use of Mindlin's theory, only interpolation functions need to be continuous between the elements. Therefore, 

continuity functions C0 can be used (Cook et al, 2002), which greatly simplifies the formulation of FEM. 

In the isoparametric formulation, the displacements in the finite element are interpolated independently from the 

nodal displacements. According to Equations (22) and (24), the elements have 5 degrees of freedom per node, 

which are the transverse displacements u, v and w and the rotations x and y. Like this,  
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where n is the number of nodes and Ni are the shape (interpolation) functions of the element.  

 

Figure 6 – Isoparametric finite element 

In order to allow for curved elements, as shown in Figure 5, the isoparametric formulation interpolates the 

geometry of the element by means of the same interpolation functions of the displacement. Like this: 





n

i

ii

n

i

ii yNyxNx
11

e  (40) 

From Eq. (23) it is verified that the deformations are the sum of a linear portion and a quadratic portion. Using a 

matrix notation, the total deformations can be written as 

(u)uBuBε L
2

1
0   (41) 

where B0 is a constant matrix that relates the displacements to the infinitesimal deformations and BL relates the 

nonlinear portion of the deformations to the nodal displacements (u). The BL matrix depends linearly on the 

nodal displacements. 

Using Equations (24), (33) and (39), it can be shown that the matrix is given by: 
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where 
m

0B  is the portion of membrane, 
b

0B  is the portion of bending and 
s

0B  is the portion of shear. In the 

isoparametric formulation these matrices are composed of a set of submatrices corresponding to each node of 

the element. Thus, considering only the submatrices referring to i node, we have: 

uBεε
mm

y

x

i

i

i

ii

i

i

n

i

m

i

i

w

v

u

x

N

y

N

y

N
x

N

00

1

0

000

0000

0000













































































 
(43) 

uBκκ
b

y

x

i

i

i

ii

i

i

n

i

i

i

w

v

u

y

N

x

N

y

N
x

N

0

1

000

0000

0000
















































































 
(44) 

uBγγ
s

y

x

i

i

i

i
i

i
i

n

i

i

i

w

v

u

N
y

N

N
x

N

0

1 000

000
































































 
(45) 

As for the nonlinear portion of the deformation, using Equations (26), (33) and (39), it is verified that the 
LB  

matrix is given by: 
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Since, according to von Kármán's theory, only the membrane deformations depend quadratically on the 

displacements. From Eq. (23) these deformations can be written as: 
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Where the vector , which contains the derivatives of the transverse displacements, can be written as: 
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Then, according to Equations (47) and (48), we can write: 
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The B  matrix relates the deformation increments inside the element with the increment of nodal displacements. 

From Eqs. (33), (42), (41) and (46) we easily get 

(u)BBB L 0  (50) 

With this matrix, all the terms needed to determine the stiffness matrix have already been obtained. 

In order to obtain the tangent stiffness matrix, it is necessary to determine the geometric stiffness matrix. 

According to Eqs. (37) and (46): 
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A

m

L

V

t

L σBσBuK    (51) 

From Eq. (46) we have 

GAB dd m

L   (52) 

Then, the substitution of Equation (52) in Equation (51) leads to 

dAdd m

A

TT
σAGuK   

(53) 

It is known that: 
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(54) 

where βd  is found by deriving Equation (48) in relation to the displacements. 

uGβ dd   (55) 

Substituting Equation (55) into Equation (54), we have: 
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yxy

xyx

yxy

xyxmT

NN

NN
dd

NN

NN
dA SuGSuGσ  (56) 

Finally, replacing Equation (56) in Equation (53), we obtain the expression of the geometric stiffness 

matrix: 

dA
A

T

 GSGK  
(57) 

It is verified that this matrix is symmetric since the matrix S is symmetrical by construction. 

7. Calculation of critical loads 

If the internal forces vector and the tangent stiffness matrix are determined, the nonlinear path of laminated 

plates can be obtained by using appropriate methods such as the Load Control Method or the Arc Length 

Method (Crisfield, 1991). However, in this work the objective is only to obtain the linearized critical load of the 

structure through the solution of a generalized eigenvalue problem (Bathe, 1996; Cook et al., 2002). 

In this case, a linear analysis of the structure submitted to the f reference load is carried out initially to determine 

the tensions and the K  corresponding geometric stiffness matrix. Assuming that the pre-critical displacements 

are negligible, the stresses distribution remains constant if the load is multiplied by a load factor λ, with the 

corresponding stresses being obtained by multiplying the reference stresses by this factor. The same occurs with 

the geometric rigidity:  

 KK   (58) 

It is also noticed that, neglecting the pre-critical displacements, the elastic stiffness matrix reduces to the initial 

stiffness matrix K0. 

It is necessary that the tangent stiffness matrix be singular for buckling to occur: 

00 0   KKK crt
. (59) 

Alternatively, the critical points are characterized by the condition that at least one eigenvalue of the tangent 

stiffness matrix must be null. Therefore, the critical load can be calculated by solving the generalized eigenvalue 

problem: 

0,0)( 0  vvKK cr  (60) 

In this equation, the λcr eigenvalue represents the critical load factor and the v eigenvector represents the 

associated buckling mode. 

III. NUMERICAL EXAMPLES 

The formulation described in the previous items was implemented in the Matlab software (Martha and Parente, 

2002). In this section are given examples of calculation of critical loads of laminated plates, these plates can 

represent ceramic tile applied on flat surface. The results of the present formulation will be compared with the 

analytical results obtained from Navier's solution for thin plates (Reddy, 1996) and the ABAQUS finite element 

commercial software. 

Laminated plates subjected to only loads in their own plane shall be considered. According to Figure 6, the 

forces considered are: 
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xx

yy

oyyoxx
N

N
kkNNNN

ˆ

ˆ
,ˆ,ˆ   (61) 

Both uniaxial and biaxial compression plates will be considered, as shown in Figure 6 (a). For plates subjected 

to uniaxial loading, Equation (61) is given by: 

0,0ˆ,ˆ  kNNN yyoxx  (62) 

and for biaxial loading, Figure 6 (b), Equation (61) is given by: 

1,ˆ,ˆ
00  kkNNNN yyxx  (63) 

   

a) Uniaxial load                 b) Biaxial load       

Figure 7 – Load cases 

In all examples, a mesh composed of 10x10 quadratic quadrilateral elements (Q8) was used, as shown in Figure 

7. In order to reduce shear lockage, the reduced integration technique with 2x2 Gauss points was used (Cook et 

al., 2002). Plates formed of two types of materials were analyzed and the same thickness was used for all 

examples. 
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Figure 8 – Finite element mesh 

1. Symmetrical Laminated Plate 

The plate of Figure 7 is square (a / b = 1), L side equal to 2.0 m, h thickness equal to 0.02 m, formed by layers of 

the same thickness and material. Recalling that, for the uniaxial loading factor k = 0 and for biaxial loading k = 

1, two materials with the following relations were considered: 

25.02.05.025 122232131221  EGEGGEE  (64) 

25.02.05.040 122232131221  EGEGGEE  (65) 

For symmetric plates there is no membrane coupling, since matrix B is zero due to symmetry. The obtained 

results are dimensionless in as  22
22 DbNN cr  , (Reddy, 1996). The analytical solution was programmed 

in Matlab for different laminar plates as shown in Figure 9.  
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Figure 9- Analytical solution using Matlab 

The result obtained by the element implemented in Matlab converges perfectly for the analytical solution, both 

for Material 1 and Material 2. It is verified that, in this case, an excellent agreement with the theory is obtained, 

as expected given it is a thin plate. It is also observed that the results are very close to those obtained by 

ABAQUS, validating the formulation and implementation of the element. 

2. Cross-ply anti-symmetrical laminated plate 

For a cross-ply anti-symmetric lamination plate, as shown in Figure 9, there is membrane-bending coupling 

because the anti-symmetry causes some elements of matrix B to be non-zero.  

 

  

 

Figure 9- Analytical solution using Matlab 
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Figure 9 - Modeling of the laminated board with different modulus of elasticity 

Table 1 shows the results of the analytical solution, in ABAQUS’s solutions for the two types of material and 

loads for a cross-ply (0/90)2 laminated plate. The obtained results are dimensionless as  22
22 DbNN cr  , 

(Reddy, 1996).  

Table 1 – Analytical solution, Matlab e ABAQUS’s solution for the plate (0/90)2. 

                                   E1/E2    Analytical   Galerkin   Abaqus   Error Galerkin   Error Abaqus     

       

 

It is verified that the result obtained by the element implemented in Abaqus for this case also converges 

perfectly for the analytical solution, for both materials. It is also noted that the results show good agreement 

with those obtained by ABAQUS, validating the formulation and implementation of the element. 

IV. CONCLUSIONS 
This paper discussed a formulation for stability analysis of laminated plates through the Finite Element Method. 

The formulation presented allows the use of triangular and quadrilateral elements with different interpolation 

orders. In the numerical examples, the quadratic finite element with quadratic interpolation C3D8R was used to 

study its behavior. The reduced integration technique was used to alleviate the problem of shear locking. 

The behavior of these elements was evaluated by comparing the results obtained by FEM with analytical 

solutions based on classical theory of laminated plates. The results show that the elements provided excellent 

accuracy results for both cross-ply and angle-ply laminated plates and uni and biaxial loading. 

The example with symmetrical laminated plates presented excellent results, showing good agreement with the 

classical plate theory, as expected. It is interesting to note that by maintaining the thickness of the board, 

material and number of layers, only changing the layer structure the critical load of the symmetrical laminate is 

greater than the critical load of the cross-ply anti-symmetric laminate.  

Another interesting aspect is the low reduction of the critical load when the E1 / E2 ratio is increased for both 

laminated structures. This aspect is important in defining the design of the layer, which will be determined from 

the characteristics and requirements of the project. 

The examples with angle-ply anti-symmetrical laminated plates showed good results for both material and 

loading. Note that when increasing the number of layers, from two to eight, while maintaining the thickness of 

the plate, there is a considerable increase in the value of the critical load. This is a very important observation 

for the design of laminated plates subjected to compressive loads. 
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It is observed that the critical load also increases for the angle-ply symmetrical and anti-symmetrical laminated 

structure, when the E1 / E2 ratio increases, in contrast to the cross-ply anti-symmetric laminated structure that 

decreases. Another important observation is about the type of loading, where it is verified that the critical load 

for uniaxial loading is always twice the critical load when loading is biaxial. 

The results show that the element provides satisfactory results for practical use. Therefore, these elements can 

serve as a basis for other studies such as, analysis and optimization of plates using robust and efficient methods, 

such as genetic algorithms.  
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